Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Hypoxic/ischemic (HI) brain injury affects 1 to 6 per 1000 live human births, with a mortality of 15% to 20%. A quarter of survivors have permanent disabilities. Hypothermia is the only intervention that improves outcome; however, further improvements might be obtained by combining hypothermia with additional treatments. Xenon is a noble anesthetic gas with an excellent safety profile, showing great promise in vitro and in vivo as a neuroprotectant. We investigated combinations of 50% xenon (Xe(50%)) and hypothermia of 32 degrees C (HT(32 degrees C)) as a post-HI therapy. METHODS An established neonatal rat HI model was used. Serial functional neurologic testing into adulthood 10 weeks after injury was performed, followed by global and regional brain histopathology evaluation. RESULTS In the combination Xe(50%)HT(32 degrees C) group, complete restoration of long-term functional outcomes was seen. Hypothermia produced improvement on short- (P<0.001) and long- (P<0.001) term functional testing, whereas Xe(50%) alone predominantly improved long-term function (P<0.05), suggesting that short-term testing does not always predict eventual outcome. Similarly, the Xe(50%)HT(32 degrees C) combination produced the greatest (71%) improvement in global histopathology scores, a pattern mirrored in the regional scores, whereas Xe(50%) and HT(32 degrees C) individually produced smaller improvements (P<0.05 and P<0.001, respectively). The interaction between the 2 treatments was additive. CONCLUSIONS The xenon/hypothermia combination additively confers greater protection after HI than either treatment alone. The functional improvement is almost complete, is sustained long term, and is accompanied by greatly improved histopathology. The unique safety profile differentiates xenon as an attractive combination therapy with hypothermia to improve the otherwise bleak outcome from neonatal HI.
منابع مشابه
Cooling combined with immediate or delayed xenon inhalation provides equivalent long-term neuroprotection after neonatal hypoxia-ischemia.
Hypothermia (HT) improves outcome after neonatal hypoxia-ischemia. Combination therapy may extend neuroprotection. The noble anesthetic gas xenon (Xe) has an excellent safety profile. We have shown earlier that 3 h of 50% Xe plus HT (32 degrees C) additively gives more protection (72%) than either alone (HT=31.1%, Xe=10.2%). Factors limiting clinical use include high-cost and specialist adminis...
متن کاملXenon and hypothermia combine to provide neuroprotection from neonatal asphyxia.
Perinatal asphyxia can result in neuronal injury with long-term neurological and behavioral consequences. Although hypothermia may provide some modest benefit, the intervention itself can produce adverse consequences. We have investigated whether xenon, an antagonist of the N-methyl-D-aspartate subtype of the glutamate receptor, can enhance the neuroprotection provided by mild hypothermia. Cult...
متن کاملAsynchronous administration of xenon and hypothermia significantly reduces brain infarction in the neonatal rat.
BACKGROUND Neonatal asphyxia causes long-term neurological and behavioural impairment in the developing brain. Concurrent administration of xenon and hypothermia synergistically reduces long-term damage in a rat model of neonatal asphyxia. This study sought to investigate whether asynchronous administration of xenon and hypothermia is capable of combining synergistically to provide neuroprotect...
متن کاملMechanisms of hypothermic neuroprotection.
Prolonged, moderate cerebral hypothermia initiated within a few hours after severe hypoxia-ischemia and continued until resolution of the acute phase of delayed cell death can reduce acute brain injury and improve long-term behavioral recovery in term infants and in adults after cardiac arrest. The specific mechanisms of hypothermic neuroprotection remain unclear, in part because hypothermia su...
متن کاملSex-specific effects of N-acetylcysteine in neonatal rats treated with hypothermia after severe hypoxia-ischemia
Approximately half of moderate to severely hypoxic-ischemic (HI) newborns do not respond to hypothermia, the only proven neuroprotective treatment. N-acetylcysteine (NAC), an antioxidant and glutathione precursor, shows promise for neuroprotection in combination with hypothermia, mitigating post-HI neuroinflammation due to oxidative stress. As mechanisms of HI injury and cell death differ in ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 39 4 شماره
صفحات -
تاریخ انتشار 2008